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INTRODUCTION

Pluripotent stem cells (PSCs), including embryonic stem 
cells and induced pluripotent stem cells (iPSCs), can give 

rise to all types of cells derived from the three embryonic 
germ layers. Because of their pluripotency and ability 
to proliferate indefinitely, these stem cells are attracting 
attention in various fields such as regenerative medicine, drug 
testing, disease modeling, and embryonic development. As a 
source of regenerative medicine product, PSCs must remain 
undifferentiated, and several marker genes and proteins 

Prediction Technology for 
Undifferentiated Marker 
Expression Levels via Label-
Free Noninvasive Cell Imaging
Ryutaro Akiyoshi *1

The production of regenerative medicine products requires continuous monitoring of 
the culture process and its quality, while avoiding microbial contamination and destruction 
of cells. In this study, a new method was developed to monitor the undifferentiated state 
of stem cells by non-destructive cell image analysis, eliminating the need for conventional 
destructive methods. Machine learning algorithms were used to predict the expression 
levels of undifferentiated markers such as Oct3/4 and Nanog without physical contact. The 
method is based on training data from iPSC images acquired by bright-field microscopy 
and assessments by destructive methods such as quantitative PCR and immunostaining. 
The application of unsupervised and semi-supervised models enables accurate prediction 
of the undifferentiated state using image analysis alone. This approach contributes not only 
to stem cell research, but also to real-time monitoring and new quality control methods for 
regenerative medicine products.
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have been used to detect PSCs that have deviated from the 
undifferentiated state(1). Examples of such markers included 
intracellular regulators (e.g., Oct3/4 and Nanog), which are 
expressed in undifferentiated cells, and cell surface markers 
(e.g., SSEA-4 and Tra-1-60), the expression of which is 
downregulated in differentiated cells(2)-(4).

However, destructive methods are required in order 
to evaluate the undifferentiated state of cells using the 
above molecular markers, such as f low cytometry (FCM), 
quantitat ive polymerase chain reaction (qPCR), RNA 
sequencing (RNA-seq), and immunostaining. If destructive 
methods are used repeatedly during the manufacturing 
process of regenerative medicine products, the cumulative 
loss of cells, which should be used for products, becomes 
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nonnegligible. This is a particularly critical problem because 
regular long-term testing is generally required in cell product 
manufacturing(5)-(7).

In this study, to observe cell morphology and detect 
changes in cell status, we employed bright-field microscopy, 
which is routinely used in cell product manufacturing. Bright-
field microscopy is a nondestructive method that does not 
require analytical reagents; thus, it is suited for continuous 
monitoring of cell status and has cost advantages. However, 
evaluation results are inf luenced by observers’ experience 
and perception, posing a problem in terms of consistency. 
To overcome this, bright-field microscopy image analysis 
that does not rely on human judgement has recently been 
investigated. Christiansen et al. proposed a model that predicts 
CD31 protein expression from phase contrast images based on 
the results of fluorescence staining of CD31 protein expressed 
on iPSCs and endothelial cells der ived f rom iPSCs(8). 
However, this approach requires f luorescence labeling 
and relevant expert annotations. Schmauch et al. directly 
correlated pathology images of tumor specimens to RNA-seq 
data in order to develop a method that predicts cancer-related 
gene expression from tissue images(9). Although this method 
achieves high accuracy without the need to identify cell 
morphologies or annotate individual cells, it involves staining 
and fixing cells, and is therefore still destructive.

Here, we developed models that predict the expression 
of undifferentiated cell markers based on the results of 
bright-field microscopy of live cells, which does not require 
cell staining and expert annotation. We built models using 
unsupervised and semi-supervised frameworks and identified 
models that accurately predict the results of several molecular 
assays.

MATERIALS AND METHODS

iPSC Preparation
The following four conditions, which might cause 

deviation from the undifferentiated state, were used for 
culturing of iPSCs (201B7).
(1) Control (Condition 1): The general maintenance culture 

method for iPSC was used.
(2) Low-nutrient condition (Condition 2): An inactivated 

medium (StemFit medium treated at 56°C for 30 min) was 
used.

(3) Differentiation condition (Condition 3): Dulbecco’s 
modified Eagle’s medium with 10% fetal bovine serum, 
1% minimum essential medium non-essential amino acids, 
and 1% GlutaMax was used.

(4) Physical stimulation condition (Condition 4): Cells were 
suspended by pipetting 20 times at passage and then 
cultured using the general maintenance culture method for 
iPSCs.
Microscopic imaging of cells cultured under each 

condition was performed from day 1 to day 2, and from day 
4 to day 5, and cell quality was evaluated using destructive 
methods (qPCR, FCM, immunostaining, RNA-seq; Figure 1).

Bright-field Imaging of iPSCs
Images of cells cultured on 6-well plates were acquired 

using CellVoyager CQ1 (Yokogawa Electric Corporation) with 
a 20 × high numerical aperture objective. In 4 of the 6 wells on 
each plate, there are 5 regions consisting of 5 × 8 squares, for 
a total of 200 fields of view per well. In each field, five planes 
were acquired at 5-μm intervals along the z-axis (Figure 2). 
Further, time-lapse imaging at 1-h intervals was performed 
for a total acquisition time of 20 h. Contrast-enhanced (CE) 
bright-field images were created using High Content Analysis 
Software System CellVoyager CellPathfinder (Yokogawa 
Electric Corporation) from images captured at different z-axis 
positions.

Figure 2 Sample arrangement in a 6-well plate for cell 
imaging and the data acquisition method in each field

Creation of Models for Predicting Results of Destructive 
Methods

CE bright-field images were resized, and the brightness 
of each pixel was tuned. These preprocessed images were 
used to build unsupervised and semi-supervised models. 
The one-class support vector machine (One-Class SVM) 
was used to build unsupervised models, and two models 
with different character ist ics were obtained based on 
the correlation coefficient and root mean square error of 
correlations with results of destructive techniques (qPCR, 
FCM, immunostaining, and RNA-seq). A classifier model 
by Waisman et al. was used as a guide model for labeling 
images of iPSCs cultured under the four conditions as either 
undifferentiated or differentiated(10). Highly reliable images for 
prediction of differentiated and undifferentiated iPSCs were 
extracted and used for retraining and optimization of models, 
and one model was built.

Figure 1 Differences in four iPSC culture conditions and 
timing of cell assessment

White triangles: changing of the common culture media
Black triangles: changing of the condition-specific media
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RESULTS

iPSC Imaging
It was difficult to detect differences among Conditions 1, 

2, and 4 by visual inspection of bright-field images of iPSCs 
taken on day 5 (Figure 3). In contrast, in Condition 3, the 
morphology of iPSCs was clearly unusual (flattened) and the 
confluency was markedly higher than in the other conditions.

Figure 3 Bright-field images of iPSC in each condition 
(day 5)

Condition 1: control; Condition 2: low nutrient condition, 
Condition 3: differentiation condition, Condition 4: physical 

stimulation condition

Analysis of Various Biological Data
Protein Expression Analysis (FCM)

Expression of SSEA-4 and Tra-1-602, which are markers 
for undifferentiated cells, was examined by FCM. The ratio of 
undifferentiated cells was defined as the percentage of double-
positive cells determined by manual gating or automated 
gating (mindensity2) out of the total live cells. The ratios of 
undifferentiated cells were relatively high regardless of the 
gating method, and the mean ratios of undifferentiated cells 
were > 90% in all conditions (Figure 4). Figure 4 shows the 
ratio of undifferentiated cells in each condition. To visualize 
differences in the ratio of undifferentiated cells by condition, 
the vertical axis shows the ratio of undifferentiated cells and 
the horizontal axis shows the condition. The possibility of 
unequal variance between groups was taken into account, and 
Welch’s t test was used to determine statistical significance 
(p < 0.1).

Protein Expression Analysis (Immunostaining)
Cells were stained using antibodies to Oct3/4 and 

Nanog, and positive and negative staining was judged by 
automated thresholding using the BASC algorithm and manual 
thresholding. The number of positive cells with an intensity 
above each threshold was used to calculate the ratio of 
undifferentiated cells (Figure 5). In Condition 1, the ratio of 
Nanog-positive cells was lower with automated thresholding 
than with manual thresholding. With automated thresholding, 
the Nanog-positive ratio was significantly lower in Conditions 
2 and 3 than in Condition 1 (p < 0.05), with an especially 
large decrease in Condition 3. On the other hand, with manual 
thresholding, the Nanog-positive ratio was significantly lower 
in only Condition 2 compared with Condition 1 (p < 0.1), and 
the profile was similar to that of the ratios of undifferentiated 
cells determined by FCM with manual gating (Pearson 
correlation coefficient, 0.93). In Condition 1, the ratios of 
Oct3/4-positive cells were lower with automated thresholding 
than with manual thresholding. With automated thresholding, 
the ratios of Oct3/4-positive cells were generally higher 
than the ratios of Nanog-positive cells. With automated 
thresholding, the ratios of Oct3/4-positive cells were slightly 
lower in Condition 2 and 3 than in Condition 1, and the 
difference between Conditions 1 and 2 was significant (p < 
0.1). On the other hand, with manual thresholding, the ratios of 
Oct3/4-positive cells were significantly lower in Condition 2 
and significantly higher in Condition 3 than in Condition 1.

Gene Expression Analysis (qPCR, RNA-seq)
Expression of Nanog and Pou5f1 (Oct3/4 gene) was 

analyzed by qPCR (Figure 6A) and RNA-Seq (Figure 6B). 
The expression levels of Nanog and Pou5f1 were significantly 
lower in Condition 2 than in Condition 1 by both methods 
(Figure 6A and 6B). The difference in Nanog expression 
level was greater between Conditions 1 and 3 than between 
Conditions 1 and 2, but there was no significant difference in 
Pou5f1 expression between Conditions 1 and 3.

Figure 4 Ratios of undifferentiated cells determined by 
FCM (with automated or manual gating) in each condition

*: p < 0.1 (Welchʼs t-test)
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Predictions of Destructive Test Results by Models
CE bright-f ield images of cells in the four culture 

conditions were input into the three models for predicting 
dest r uct ive test results, and the expression levels of 
undifferentiated cell markers were predicted (Figure 7). 

Model I with the One-Class SVM framework showed the 
strongest correlation to the immunostaining results for Oct3/4 
with manual thresholding (bottom right panel in Figure 5, r = 
0.998), and also showed strong correlations to the qPCR and 
RNA-seq results for the Oct3/4 gene. Model I also showed 
strong correlations to the FCM results for undifferentiated 
cell marker proteins with auto-gating (left panel in Figure 
4, r = 0.912). Model II, which also employs the One-Class 
SVM framework, showed the strongest correlation to the 
immunostaining results for Nanog with automated thresholding 
(top left panel in Figure 5, r = 0.961), and correlations to 
Nanog gene expression levels (left panels in Figure 6). On 
the other hand, Model III with a semi-supervised framework 
showed a very strong correlation to the immunostaining 
results for Nanog with automated thresholding (top left 
panel in Figure 5, r = 0.978), and correlations to Nanog gene 
expression levels (left panels in Figure 6). Furthermore, 
Models II and III showed strong correlations (r = 0.908 and 
r = 0.938, respectively) to FCM results with manual gating 
(left panel in Figure 4). Taken together, each model predicted 
expression levels of undifferentiated cell markers with high 
accuracy.

Figure 7 Predictions of expression levels of 
undifferentiated cell markers in each condition by models 

for predicting the results of destructive methods
*: p < 0.1, **: p < 0.05, ***: p < 0.01 (Welchʼs t-test)

DISCUSSION

Various cellular states, such as epigenetic, transcriptional, 
and metabolic states, change over a period of hours, weeks, 
or longer; thus, abnormalities can be missed if their detection 
relies on a single marker or a single method(11)-(13). This study 
examined in detail the expression of undifferentiated cell 
markers in iPSC using multiple destructive methods and found 
discrepancies between the expression of Oct3/4 gene and 

Figure 5 Ratios of undifferentiated cells determined by 
immunostaining in each condition

Top: Results with BASC algorithm-based automated 
thresholding

Bottom: Results with manual thresholding
*: p < 0.1, **: p < 0.05 (Welchʼs t-test)

Figure 6 Comparison of gene expression levels of 
Nanog and Pou5f1
A: qPCR, B: RNA-seq

*: p < 0.1, **: p < 0.05 (Welchʼs t-test)
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Oct3/4 protein (Figures 5 and 6). This suggests a limitation 
of methods that rely solely on gene expression or protein 
expression for accurate capturing changes in cell status. In 
this study, we optimized independent models predicting 
either protein or gene expression and showed that changes in 
cell status are detectable even with the above discrepancies. 
By using changes in the expression of various molecular 
markers determined by different techniques, those prediction 
models can be optimized as signal detection models that 
comprehensively capture the cellular states. Further, this 
nondestructive label-free approach can be used for continuous 
nondestructive monitoring of cell status in the closed culturing 
environment, which may facilitate process control or process 
stoppage when abnormalities occur.

This study developed models that predict the expression of 
undifferentiated cell markers from cell images. This approach 
indicates that changes in expression of any molecules that 
influence the cell population dynamics (e.g., appearance and 
confluency) can be predicted from cell images. By extending 
these models to detect variation in expression of intracellular 
molecules, advance quality assessments, beyond assessment 
of the differentiation status of cells, will be achievable in cell 
research and cell product manufacturing.

Moreover, integration of the model-building workflow 
developed in this study with new imaging technologies, 
such as holographic imaging and the RM-DIC (retardation-
modulated differential interference contrast) microscopy, will 
enable us to visualize the structure of living cells at higher 
resolution(14)(15), thereby expanding possibilities of a robust and 
reliable pipeline for assessing cell quality in the manufacturing 
of regenerative medicine products.

CONCLUSION

We developed models that can predict gene and protein 
expression levels in cells from iPSC images with high 
accuracy in a nondestructive manner. Future challenges 
include demonst rat ing the robustness of our models’ 
predictions when applied to several cell lines, and building 
similar prediction models for differentiated cells. We 
further validate the application of this technology to actual 
manufacturing and demonstrate its value at our clients’ sites in 
order to provide solutions to challenges in the manufacturing 
of regenerative medicine products.
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